
Library OS is the
New Container.

Chia-Che Tsai / RISE Lab @ UC Berkeley

Talking Points

• In a nutshell, what is LibOS?

• Why you may want to consider LibOS?

• What’s our experience?

• Introducing Graphene: an open-source Linux libOS

Containers vs VMs

Host OS

App
Bin/Lib

App
Bin/Lib

Guest
OS

Guest
OS

• Host-dependent
• Light resources
• Binary/library compatibility
• Userland isolation

Containers

Linux OS

App
Bin/Lib

App
Bin/Lib

App
Bin/Lib

• Host-independent
• Heavy resources
• System ABI compatibility
• Kernel isolation

VMs

LibOS: Pack Your OS with You

• A part of the OS as a library
• Per-application OS isolation
• Can be light-weight
• Can be compatible as system ABI
• Can be host-independentHost OS

App
Bin/Lib

App
Bin/Lib

App
Bin/Lib

LibOS LibOS LibOS

Depend on how you
implement the libOS

LibOS and Friends

• Drawbridge

• Unikernels

• Google gVisor

Graphene: An Open-source Linux LibOS

• An ambitious project to build an ultimate libOS

As light-weight
as it can be

As host-independent
as it can be
(Maybe even more than VMs
- Explain later)

As securely
isolated
as it can be

https://github.com/oscarlab/graphene

A Research Prototype Turned Open-source

2014 Graphene released as an artifact

2016 First to support native Linux applications on
hardware enclaves (Intel SGX)

Today Working toward code stability and community building

Main contributors:
Intel Labs, Golem, Invisible Things Lab, Fortanix

Getting Compatibility
For Any Host

Compatibility Goal of Graphene

• Running a Linux application on any platform
– Off-the-shelf binaries
– Without relying on virtualization

Linux Compatibility is Hard

• Imagine implementing 300+ system calls on any host
– Flags, opcodes, corner cases (see “man 2 open”)
– Namespaces and idiosyncratic features
– IOCTL() and pseudo-filesystems
– Architectural ABI (e.g., thread-local storage)
– Unspecific behaviors (bug-for-bug compatibility)

Dilemma for API Compatibility

Rich of features

Having a rich set of
APIs defined for
application developers

Ease of porting

Being easy to port to
other platforms or
maintain in new versions

Compatibility

Being able to reuse
existing application
binaries as they are

Cannot achieve all these properties at the same time

Solving the Dilemma

Linux ABI (300+ syscalls)
Rich features

Backward-compatible

Backward-compatible

Easy to port
Host ABI (36 functions)

Linux Kernel
Versions BSD OSX Win

Intel
SGX

Host options:

LibOS
open read write …

Components of Graphene

• System calls implemented from
scratch (one-time effort)LibOS

Host ABI (36 functions)

Linux
PAL

BSD
PAL

OSX
PAL

WIN
PAL

SGX
PAL

Platform Adaption Layers (PAL):

• Designed for portability
– Short ans: UNIX
– Long ans: a common subset

of all host ABIs

• The only part that has to be
ported for each host

LibOS
open read write …

How Easy is Porting Our Host ABI?

2 MS students
x term project

1 MS students
x 2 semesters

1 MS students
x 3 semesters

1 PhD student (Me)
x 3 months

BSD
PAL

(Released)

WIN
PAL

(Experimental)

OSX
PAL

(Experimental)

SGX
PAL

(Released)

Not all straightforward, but we learned where the pains are.

Problem:
can’t set FS register!

Problem:
mmap() vs MapViewofFile()

Summary

• A LibOS to implement Linux ABI; painful, but reusable
• Host ABI is simple and portable
• Porting a PAL = Porting all applications

How does Graphene gain compatibility?

Porting to Intel SGX
(A Uniquely-Challenging Example)

What Is Intel SGX?

Software
Guard
Extensions

Available on Intel 7+ gen
E3 / i5 / i7 CPUs

Hardware
Enclave

Trusted Code

Data stay encrypted
on DRAM

Program integrity

CPU attestation

What Can Intel SGX Do?

• Assume the host is untrusted

• You only have to trust your software and

Hacked OS
or hypervisor

Modified
Devices

Interposed
DRAM

Compromised
Admins

As a Platform, SGX Has Many Restrictions

• Limited physical memory (93.5MB)

• Only ring-3 (no VT)

• Cannot make system calls
(for explicit security reasons)

Hardware Enclave

Serving System Calls Inside Applications

• LibOS absorbs all system calls
• RPCs for I/O & sched

• Shielding: verify RPC results
from untrusted hosts

Hardware Enclave

Graphene
LibOS

Intercept
Syscalls

SGX PAL

Host OS

Remote
Procedure
Calls

Sharing Memory is a Big Problem

Linux is multi-proc:
servers, shells, daemons

bash

ps grep

LibOS

LibOS LibOS

• Enclaves can’t share memory

• Why not single-enclave?
– Position-dependent binaries
– Process means isolation

• LibOSes need to share states:
– Fork, IPCs, namespaces

Multi-
Enclave

Assumes No Shared Memory

• Basically a distributed OS w/ RPCs
– Shared namespaces
– Fork by migration
– IPCs: signal, msg queue, semaphore
– No System V shared mem

bash

ps grep

LibOS

LibOS LibOS

RPCRPC

RPC

Summary

• LibOS serves APIs on a flattened architecture
• For multi-proc: Graphene keeps distributed OS views

without shared memory

Why does Graphene work on SGX while
containers/VMs don’t?

Security Isolation
& Sandboxing

Mutually-Distrusting Containers

• SW technique
– No HW isolation
– Can’t stop kernel

bugs

User A User B

Linux OS

App

Bin/Lib

App

Bin/Lib

Distrust

User
NS

PID
NS

Mount
NS

syscalls

User
NS

PID
NS

Mount
NS

syscalls

Mutually-Distrusting LibOS Instances

User A User B

Proc 1

LibOS

PAL

Proc 2

LibOS

PAL

Proc 1

LibOS

PAL

Proc 2

LibOS

PAL

Proc 3

LibOS

PAL

Trust group Trust group

Distrust

• IF syscalls are served only inside libOS, no attack can occur

HW (addr space)
Isolation

Protecting Host OS From LibOS

User A User B

Proc 1

LibOS

PAL

Proc 2

LibOS

PAL

Proc 1

LibOS

PAL

Proc 2

LibOS

PAL

Proc 3

LibOS

PAL

Trust group Trust group

Distrust

Host OS (Linux)

syscalls syscalls Seccomp
Filter

Seccomp
Filter

Default Seccomp Filter: Graphene vs Docker

• What’s used most of the time

Graphene:
https://github.com/oscarlab/graphene/blob/
master/Pal/src/security/Linux/filter.c

SYSCALL(__NR_accept4, ALLOW),
SYSCALL(__NR_clone, JUMP(&labels, clone)),
SYSCALL(__NR_close, ALLOW),
SYSCALL(__NR_dup2, ALLOW),
SYSCALL(__NR_exit, ALLOW),
...

48 syscalls
allowed

Docker:
https://github.com/moby/moby/blob/
master/profiles/seccomp/default.json

“names": [
“accept",
"accept4",
"access",
...

],
"action": "SCMP_ACT_ALLOW",

307 syscalls
allowed

Further checks syscall flags

Not enough? Try Graphene-SGX Containers

• Graphene-SGX as a backend for Docker

Dockerfile

Docker
Engine

Graphene
Configuration

Generate

Docker container
launch

Hardware Enclave

Graphene
LibOS

SGX PAL

Summary

• System calls inside libOS are naturally isolated
• Small default system call footprint (48 calls)
• Graphene-SGX containers:

Mutual protection between OS and applications

Why is Graphene better at sandboxing
than containers?

Functionality
& Performance

Current LibOS Implementation

Graphene LibOS

Virtual File System

Proc
FS

RPC

ELF
loader Socket

Chroot
(Passthru)

FS Pi
pe

Si
gn

al SYS V
IPC

Th
re

ad

fork

Migration
Namespace

VMA

exec

145 / 318 system calls
Implemented (core features)

34 KLOC
Source code

909 KB
Library size

Tested Applications

… and more.

See examples on: https://github.com/oscarlab/graphene

Memory Usage & Startup Time

0

50

100

150

make -j4 Apache
4-proc

bash
unixbench

Graphene on Linux LXC KVM

Memory Usage (MB):
Startup Time (millisec):

0.64

200

0

10

1,000

Startup Time

~10s

Graphene is as lightweight as containers,
with extremely short startup time.

R Benchmarks
O

ve
rh

ea
d

to
 L

in
ux

Linux Graphene on Linux Graphene-SGX

5x
Graphene itself adds no overheads

but SGX does (up to 10X)

Web Servers (Threads vs Processes)

0

2

4

6

8

10

0 2 4 6 8 10 12

R
es

p.
 T

im
e

(S
)

Throughput (k.req/S)

Linux Graphene on Linux Graphene-SGX

(25 threads)

0

2

4

6

8

10

0 2 4 6 8 10 12

R
es

p.
 T

im
e

(S
)

Throughput (k.req/S)

(5-proc)

Nearly no TP loss
at high traffic loads

With IPCs, 5% TP loss
on Graphene-Linux,
25% TP loss on SGX

Conclusions

• LibOS: compatibility & sandboxing w/o VMs, but light as containers.

• Graphene LibOS:
– Aiming for full Linux compatibility (progress: 45%)
– What’s the craziest place you wanted to run Linux programs?

It’s possible!

https://github.com/oscarlab/graphene

Send your questions & feedbacks to:
support@graphene-project.io

	Slide Number 1
	Talking Points
	Containers vs VMs
	LibOS: Pack Your OS with You
	LibOS and Friends
	Graphene: An Open-source Linux LibOS
	A Research Prototype Turned Open-source
	Slide Number 8
	Compatibility Goal of Graphene
	Linux Compatibility is Hard
	Dilemma for API Compatibility
	Solving the Dilemma
	Components of Graphene
	How Easy is Porting Our Host ABI?
	Summary
	Slide Number 16
	What Is Intel SGX?
	What Can Intel SGX Do?
	As a Platform, SGX Has Many Restrictions
	Serving System Calls Inside Applications
	Sharing Memory is a Big Problem
	Assumes No Shared Memory
	Summary
	Slide Number 24
	Mutually-Distrusting Containers
	Mutually-Distrusting LibOS Instances
	Protecting Host OS From LibOS
	Default Seccomp Filter: Graphene vs Docker
	Not enough? Try Graphene-SGX Containers
	Summary
	Slide Number 31
	Current LibOS Implementation
	Tested Applications
	Memory Usage & Startup Time
	R Benchmarks
	Web Servers (Threads vs Processes)
	Conclusions
	Slide Number 38

